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A kinetic method for hyperbolic—elliptic equations is presented in this paper. In
the mixed type system, the coexistence of liquid and gas and the phase transition
between them are described by the van der Waals-type equation of state (EOS).
Because the fluid is unstable in the elliptic region, the interface between liquid and
gas can be captured naturally through condensation and evaporation processes, which
continuously remove any “averaged” numerical fluid away from the elliptic region
at the interfaces. As a result, a sharp liquid—gas interface can be constructed from
the competition between the numerical diffusion and phase transition. The numerical
examples presented in this paper include both phase transition and multifluid interface
problems. (© 2001 Academic Press
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1. INTRODUCTION

The study of liquid—gas phase transition and interface movement is important in scie
and engineering. The macroscopic governing equations studied in the current paper ar
mixed hyperbolic—elliptic system, where the van der Waals-type equation of state is uc
Many numerical schemes have been proposed to solve the mixed type system, and the s
for the possible Riemann solution for such a system is still under investigation [9, 10,
16, 18, 27, 29, 30]. To properly capture the density jump across a liquid—gas interface
well as satisfy the equal-area rule in the Maxwell construction, the viscosity and capillat
condition has been proposed, especially for 1D flow [28]. To capture the physical realize
solution, many problems, such as the entropy rate admissibility condition and the interf
stability problem, have been well analyzed theoretically; see [3] and references thereir
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Physically, dense gas properties, such as phase transition behavior and surface ter
can be derived from the microscopic Boltzmann equation [6]. For example, the van der W
model can be rigorously obtained from statistical mechanics, and the coexistence regic
liquid and gas is predicted from the Maxwell construction. Particle interaction with near
repulsion and long-ranged attraction can naturally represent the phase transition and su
tension properties [11, 20]. However, because of the extreme complexity of the collisi
kernal of the interacting particles in a dense gas and the tremendous computer resot
required to resolve the six-dimensional distribution function, many kinetic methods &
mainly used for computations with an ideal compressible gas [34]. Recentit, ddnave
simplified the Boltzmann equation for a dense gas and implemented the intermoleci
interaction as a source term into the gas—kinetic BGK model [13], from which both tl
van der Waals equation of state (EOS) and the surface tension can be obtained. B
on the simple particle interaction pictures, many lattice Boltzmann methods (LBM) ha
been developed (see [7, 21, 25, 26, 32] and refences therein) and the particle interax
mechanism is used to simulate the phase transition and multiphase flow. Recently, combi
the macroscopic van der Waals equation of state and the mesoscopic lattice Boltzn
method, Heet al. developed an interesting scheme for capturing the liquid—gas interfa
and have successfully applied the scheme to the study of the Rayleigh—Taylor instab
[14]. Similar to the volume of fluid (VOF) and level set methods [15, 24], an index functio
is used in [14] to capture the liquid—gas interface, but the possible phase transition has
been studied there. Also, the densities of the liquid and gas in [14] are assigned numeric
with values which may not be consistent with the ones from the van der Waals EOS
the Maxwell construction. In the past decades, many interface capturing and sharpe
schemes have been developed. The level set method is one of the most successful
in the multifluid applications (see [17, 19, 31] and references therein). The reinitializati
procedure used in the level set method could keep the level set as a distance function
significantly reduce the mass losses caused by using the material velocity for advectio
the level set function instead of the interfacial velocity.

In this paper, we develop a kinetic BGK-type scheme [34] for the hyperbolic—ellipt
system, where the continuum and momentum equations are solved by following the t
evolution of the gas distribution function of the approximate Boltzmann equation. Tl
phase transition and motion of the multifluid interface are captured naturally in the curri
method. However, as the result of the van der Waals EOS considered here, the cul
method can only be applied to the equilibrium phase transition problem. It is inadequate
understanding the nonequilibrium process inside the liquid—gas interface. Also, the B
model used in the current study is only one of the kinetic models that can be employe
study multiphase flow. The kinetic equation derived in [13] has more generality, which ¢
be used as a starting point.

2. GOVERNING EQUATIONS AND INTERFACE CAPTURING MECHANISM

In the one-dimensional case, the governing equations for the isothermal hyperbo

elliptic system are
) pU )
+ =0, 1
(pU)t (pU2+ P/ x @
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FIG. 1. The van der Waals equation of state RT = 1.0 case.

where p andU are the density and velocity. For multiphase flow and phase transiti
problems, the relation between the presguiand the density proposed by van der Waals
is quite satisfactory. The equation of state is

pRT 2

= —ap”,

1—-bp o
whereR is the gas constant, is the temperature, aralandb are constants. The critical
temperature for the separation of liquid and gas is

8a
= >BR'
When the fluid temperature is below the critical value, phase segregation occurs. In
paper, we study fluids with fixed values= 0.9, b = 0.25, andRT = 1.0. The corre-
sponding critical temperature in this caselis= 1.0666/R. SinceRT is less thanl;R,
the phase transition can appear in the current fluid system. An illustrative plot of 1
van der Waals EOS is shown in Fig. 1. The densities of liggiednd gasog can be ob-
tained from the Maxwell construction (equal-area construction). The values in the plot
1/p = 0.4942731/py = 1.405065 1/p, = 0.574912, and Apg = 1.036251. The fluid
densityp can be catalogued in the following regions:

Te

1 1 -

- < —, liquid phase

[l

1 1 1 .

— < — < —, metastable regign

o P P

1 1 1 . . .
— < — < —, unstable elliptic region (mixture), (2)
Pa P pp

1 1 1 .

— < — < —, metastable regign

Pg P Py

1 1

— < -, gas phase.

Py Y

When the fluid density takes on values in the elliptical region, any small fluid perturbati
will be amplified owing to the negative slope &p/dp. The fluid mixture in the elliptic
region will either evaporate to the gas or condense to the liquid. So, similar to the shc
steepening mechanism, the van der Waals EOS has an intrinsic physical mechanis
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separate different phases at the multifluid interface and sharpen the interface. This is
physical reason for the existence of the sharp liquid—gas interface in the real world. T
property can also be used to develop an interface capturing scheme.

Numerically, because of cell size limitations and the averaging process [34], the liquid ¢
gas inside any numerical cell are mixed to form an averaged state. If there is no steepe
mechanism to separate the mixed fluid, such as at the contact discontinuity wave of
compressible Euler equations, the thickness of the interface will grow with the square r
of evolution time or total number of numerical time steps. Physically, the liquid—gas interfa
is kept sharp through molecular interaction in the microscopic description or through the
der Waals-type EOS in the macroscopic equations. Once this kind of physics is incorpor:
into a numerical scheme for the multifluid motion, the averaged state which most like
happens in the elliptical region will condense to the liquid or evaporate to the gas, an
sharp interface can be obtained automatically.

To use this kind of steepening mechanism, any proposed scheme must be accura
predicting the liquid and gas densities first. In other words, even without explicit terr
for the Maxwell equal-area construction in Eg. (1), any scheme must have certain intrir
dissipative or diffusion mechanisms to pick up the physical solution with the correct dens
jump. Mathematically, the correct density jump at the interface can be obtained throt
the implementation of the viscosity capillarity condition. For example, in the 1D case a
in the Lagrangian formulation [28], the momentum equation should have t&uns—
€2A(1/p)xxx ON the right-hand side, wheeedenotes viscosity anef A is the capillarity
coefficient. In the multidimensional case, the capillarity term is similar to the term relats
to the surface tension. However, even in the case without surface tension, such as th
case, the above viscosity capillarity condition is still necessary for the correct density jul
at a interface. It has been shown theoretically that the above viscosity capillarity condit
is equivalent to the inclusion of diffusion and dissipative terms in the mass and moment
equations, where the dissipative coefficients have to satisfy certain conditions [29].

Currently, it seems difficult for any high-order scheme to predict a very accurate den:
jump at a multifluid interface. It is not surprising that many existing high-order schem
will have numerical viscosity and diffusion coefficients which strongly depend on tt
interpolation limiters, CFL number, cell size, and even the Runge—Kutta time-steppi
techniques. In the current paper, we present a kinetic scheme to solve Eq. (1). Bec
of the special diffusion and dissipative mechanisms in the kinetic approach, the Maxw
equal-arearule seems to be implicitly achieved. The resulting equilibrium densities of lig
and gas are very close to the theoretical values. At the same time, the phase boundary ¢
kept within two or three grid points. After verification of this property, the kinetic method i
used to simulate the evolution of a multifluid interface. The interface captured in the curr
method is a numerical interface. The exact magnitude of the numerical diffusion and
effect on the physical capillarity is difficult to estimate. Anderson, McFadden, and Whee
presented an excellent introduction and review for more realistic diffuse interface mod
derived from the thermodynamics [1].

3. KINETIC SCHEME FOR THE HYPERBOLIC-ELLIPTIC EQUATIONS

The kinetic BGK model of the approximate Boltzmann equation is [2]

— f
ft+ufx=gr : 3)
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where f is the gas distribution functiorg is the equilibrium state, and is the particle
collision time. Bothf andg are functions of space, timet, and particle velocity. The
macroscopic variables, such asU, and p in Eq. (1), are the moments of the above gas
distribution function defined by the relations

p:/fdu, U:“fodu, p:/(u—U)Zfdu.
P

To recover Eq. (1) from Eq. (3), we can construct an equilibrium state

1

A2 —1(u=U)2

= — e s
a-n(%)

wherel is defined by

PR
2p
1 1—bp
~ 2RT—ap + ap?
= A(p), (4)

and the variation of. is related to the density changes by

_ lab?p®—2abp + (a—bRT)
2 (RT—ap+ahp??

= D(p)dp, )
where the functiong. andD are well defined in the above equations. In the current pape
a fixed valueRT = 1.0 is used.

Because both mass and momentum must be conserved during the particle callisio
andg satisfy the compatibility condition

da

dp

/(f—g)wdu=0 fory = (1, u)’, (6)

at any point in space and time.
The solution of the BGK model (3) is

1 t / _(t_t! / _
f(Xj+1/2,t, U) =S ; A g(X ,t/, u)e t=t/x dt + € te fo(Xj+1/2 — Ut), (7)

wherex; ;1,2 is the location of the cell interface amd= X412 — u(t — t’) is the particle
trajectory. There are two unknowns in the above equation. One is the initial gas distribut
function fp at timet = 0, and the other ig in both space and time locally aroux};1,»,
t = 0). Similar to the BGK-type schemes for the Euler and Navier—Stokes equations [3
the numerical scheme based on Eq. (7), along with the compatibility condition (6),
described as follows:

Step 1:Use the MUSCL technique [33] to interpolate the conservative variables
(p, pU)T, and obtain the reconstructed initial data inside each cell,

Wi (Xj11/2) = W (Xj-1/2)

Wi (x) =W (X)) +
Xj+1/2 = Xj-1/2

(x—xj) forxe[xXj_12, Xj+12], (8)
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whereW; (x;) is the cell-averaged value, ald (x;_1/2) andW; (xj;1/2) are the values at
the left and right boundaries of céllwhich are constructed using a nonlinear limiter, such a
van Leer’s limiter. After the reconstruction, the valyedJ and their corresponding slopes,
e.g.,0p/9x andaU /ax, are obtained. Therefore, the variationan be found subsequently
through Eg. (5), a81/ax = D(p)dp/oX.

Step 2:Based on the reconstructed data in Step 1, around each cell inteffags the
initial gas distribution functiorfg is assumed to be

M+ (x — x; al, X <Xii1/2
fo(x) = {9[ ( j+1/2)a'] j+1/2 ©)

o' [14 (X — Xj412)a |, X = Xjya2,

where the stateg andg’ are the Maxwellian distribution functions defined in terms of the
conservative variables at a cell interface,

¢ =d' (Wi (xj412)) and g =g (Wjs1(Xj412))- (10)

For example, with the distribution

1

d=p (L) e (1)
T

all coefficients ing' can be obtained as

o' Pi (Xj+1/2)
U = [ £V (Xi4a2) /03 (X422) | - (12)
A A(ph

Similar formulation can be found fay'. The coefficientg" in Eq. (9) have the forms
a' = m;" + mj'u 4 ms'u?, (13)

which canbe obtained from the Taylor expansion of a Maxwellian distribution function. Tt
coefﬁments(ml , m2 , m3 ") depend or(p', U"), (p", U") and their corresponding slopes,

|.e.,
ap' au' 9 ap" U™ AT
i,—,— and o
IaX 9dX 090X 8x 8 8x

The detailed relations are

[1/9p 1 N Lt
Ir
m; = ——-U°)]——-22U—| ,
! (8x)+<2A )8x ax]
EN au
I,r
m; = ZU— 20— 14
27 ax ax} ’ (14)
ml,r_ T o9n I,r
ST ax]

Therefore, with the initially reconstructed data in Stegfd(x) in Eq. (9) is totally deter-
mined. For the sake of simplicity, we assum)g1/>, = 0 in the rest of this paper.
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Step 3:The equilibrium state is constructed as
9 = golL + (1 — H[xD@'x + H[x]a'x + Ad], (15)

where H] is the Heaviside function angp is the state located & = 0,t = 0):

1
A 2
% = po <°> g roluUo", (16)
T

The coefficients!, &, and A in Eq. (15) have the forms

ar = m;" 4+ ms'u 4 my'u?,

A=A1+A2u+A3U,

which have the same functional dependencedrax, dU /9x) and (dp/dt, dU/dt) as
shown in Egs. (13) and (14).

Taking both limits(x — 0) and(t — 0) in Egs. (7) and (15), and applying the compati-
bility condition at(x = 0, t = 0), we can get macroscopic quantities

o= (p:l(.)lo) - / 9oy du = / (g'H[U] +g'(1 = HIuD)y du, (17)

whereg' andg" are known from Step 2. HeMy, is the “averaged” flow variables at the
cell interface, from whicty, can be determined. Then, connectig to the cell-centered
valuesWi, (x;) andW;1(Xj+1), we can get the slopes for mass and momentum distributiol
on both sides,

% 3(polo) \ T = Wo — W (%) forx <0

X’ 09X Xj+1/2 = Xj o (18)
<ap{) 8(pOUO)r>T = Wi1(Xj41) = Wo forx >0

ax’  ax Xj+1 — Xj11/2 -

from whichdp/dx, 3U /dx, anddi/dx can be obtained. Therefor@', &) in Eq. (15) can
be determined in a similar way to that in Egs. (13) and (14). The only unknown in Eq. (1
is A, whichiis related t@pg/dt, dUq/0t, anddrg/dt (=D (pg)dpo/dt) through the relations

— M1 900 1 Ao dUo hr
A= | =2 U — 2Uo 2|
! _po(at)+(2,\o 0) at 005t
S T V9 aUo
Ap = |2U02 4+ 200 20| 19
= [0 1 22020 (19
— [ 3)\0 Lr
Ag= |20
3 8t}

To this point, we need to evaluaigy/at anda(pU )o/at.
Step 4: Substituting Egs. (15) and (9) into the integral solution (7), we obtain the distt
bution functionf atx =0,
f(0.t, u) = yodo + y1@H[u] + &' (1 — H{u))ug + y2Ad + ys((1 — uta)H[u]d
+ (1 —uta) (1 — H[uDhg", (20)
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where

w=1-e'",
Yy = r(—l—i—e_t/t) +te VT,
Vo = ‘L'(t/‘L' — 1—|—e‘t/’),

ys=¢€",

The only unknown in Eq. (20) i, which is a function ofdpo/dt, dUg/dt) (see Eq. (19)).
Since the compatibility condition must be satisfied everywhere in space and time, it car
integrated in a whole CFL time stepT atx = 0:

AT
/ /(f(O,t,u) — g0, t,u)ydtdu=0. (21)
0

From this we obtain

I's—,
5 S

( 9po 1 3(pU)o
at

T
) = /[—Fsgo + T'pu(@H[u] + & (1 — H[u]))go
+T3(H[u]g' + (1 — H[uDg") + Fau@Hlulg'
+a"(1 — HupgH]v du. (22)
All terms on the right-hand side of the above equation are known, and
Fo=AT —7(1—e /"),
F1=1(—AT +2t(1—e27") — ATe 2T/7),
Ty = %ATZ —TAT +7%(1—e 2T,
I's = ‘L’(l — e‘AT/T),
Iy=—1(—ATe " +¢(1-e277)),

['s = r(AT —r(l—e’AT/’)).

Thus,(3po/0t, dUg/0t), as well asHirg/at, can be obtained from Eq. (22).
Step 5: The time-dependent numerical fluxes of mass and momentum across the
interface are

Fw,j+12 = Fp® = /Ul/ffj+1/2(0, t,u)du, (23)
Fou () j+1/2

where f is given in Eq. (20). The update of flow variables inside each cell becomes

1 At
Wjn+1 = an + Ax /0 (Fw,j71/2 - FW,j+1/2) dt.

From the above updated variablﬁli‘,‘“, Steps 1-5 can be repeated again at the next tinr
level.
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4. NUMERICAL EXAMPLES

In this section, we present a few test cases in both one and two dimensions. The van
limiter is used for the interpolations @f andpU at the beginning of each time step. The
time stepAT is determined by the Courant—Friedrichs—Levy condition with CFL numbe
0.5 for the 1D cases andZb for the 2D cases. The collision timds defined by

Ip'— Pl

=CAT + AT
T 1 2 o+

, (24)
wherep' = A(p"), p" = A(p"), andC; = 0.05 andC, = 2.0 are fixed in all calculations.

4.1. 1D Shock Tube Cases

In the following, we apply the kinetic method to four shock tube cases, which are us
by Shu [27] for testing the ENO-type schemes. In all four cases, the computational dorr
is x € [0, 1]. There are 200 grid points used in the first three cases and the correspon
cell size isAx = 1/200. For the fourth case, 400 grid points are used and the cell size
AX = 1/400.

Case 1. The initial condition for this case is the exact liquid and gas densities from tt
Maxwell construction, where the initial data are given by

(1/pL =0.494273UL = 1.0)[x<0125 and (1/pr = 1.405065Ur = 1.0)|x-0.125.

This test is mainly used to see if the scheme can keep the admissible density jump f
the Maxwell construction. At the output tinhe= 0.60, the density distribution (connected
circles) is shown in Fig. 2, where the dashed and dotted lines represent log, 1/ pq,
and 1/ pg respectively.

Case 2. The second case has the following initial condition:

(1/pL =054, UL = 1.0)[x<0125 and (1/pr = 1.8517 Ugr = 1.0)[x-0.125

FIG. 2. Connected circles are the calculated distribution 4f Wvith a cell sizeAx = 1/200 at the output
timet = 0.60. The initial density discontinuity is located»at= 0.125. The dotted lines are densities gpiland
1/pg from the Maxwell construction. The region between the dashed(iygs, 1/ ;) is the elliptic region where
the fluid is intrinsically unstable.
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FIG. 3. (a) Circles are the simulation results of distributigfp lwhich are obtained from a calculation with
the cell sizeAx = 1/200 at the output timé = 0.50. The solid line is the result obtained with a much refined
meshAx = 1/2000. (b) Distribution of 1o obtained with a refined meshx = 1/2000. The solid lines in (a)
and (b) are the same line.

This initial jump satisfies the Rankine—Hugoniot condition but does not satisfy the dens
jump from the Maxwell construction (viscosity capillarity condition). The simulation result
attimet = 0.5 are shown in Fig. 3a, where the solid line is obtained with the same schel
but on amuch refined megfx = 1/2000. In Fig. 3b, the density calculated with the refined
meshAx = 1/2000 is shown separately to aid comparison with the results in [27]. Th
case clearly shows that the current scheme can pick up the physically admissible solus
There are no oscillations at the liquid phase around the liquid—gas interface.

Case 3. The initial condition for this case is
(1/pL =045 UL =1.0)[x<0125 and (1/pr = 2.0,Ugr = 2.0)|x>0.125

Figure 4 shows the density distribution at the output time0.30, and the solid line is the
solution obtained from a calculation with a refined mesh= 1/2000. From this figure,
we can also observe the sharp interface between the liquid and gas phases.

Y

[ = R P

0 0.1 02 03 04 05 08 07 08 a9 1

FIG. 4. Circles are distribution of /o calculated with a cell siz&.x = 1/200 at the output timé = 0.30.
The solid line is the result obtained with a refined mash= 1,/2000.
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FIG.5. Thesolidlines are the distributions gfdat different output times. The mesh size usefixs= 1/400.
(&)t =0.0; (b)t =0.1; (c)t = 1.0; (d)t = 1000. Circles are added in plot (d) to show the number of grid points
around the liquid—gas interfaces.

Case 4. The initial condition for this case is
(1/p,U) = (0.8 + 0.2sin(x), 1 — 0.5 cogx)).

The initial density is entirely in the elliptic region. Periodic boundary conditions are use
The solutions with cell siza x = 1/400 at different output time are shown in Fig. 5. These
figures clearly show the flow instability in the elliptic region and how the densities eventua
go to the well-defined liquid and gas densities, even though the Maxwell constructior
not explicitly used in the current scheme. For the liquid and gas phases, the numel
densities obtained at timie= 100 are Y p = (0.4940Q 1.40175. The differences between
the numerical values and the theoretical o(@494273 1.405065 are less than .6%.
This is a very good case to test the ability of any high-order scheme to capture the cor
density jumps around the phase boundary, as well as the sharpness of the interface
scheme can capture the jump within 2 or 3 cells, as shown in Fig. 5d.

4.2. Ligquid—Gas Interfaces in 2D Cases

In 2D cases, the inclusion of surface tension and gravity becomes important. In
case 5, the gravitational forgeG is implemented in they-momentum equation for the
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FIG. 6. Schematic diagram of liquid—gas distributions.

liquid phase, and the nondimensional magnitud€dé assigned the valueZb. In test
case 6, an additional body fore@VV?p is added in the momentum equations to recove
the surface tension effect [7, 14, 23]. The nondimensional coeffigiersied in case 6 is
equal to 50 x 1076,

Case 5. Thisis adam break problem. Many schemes have been used in this kind of f
surface problem, including the volume of fluid (VOF) method, boundary integral techniqu
the front tracking method, and the arbitrary Lagrangian—Eulerian (ALE) method (see [4
15, 35] and references therein). The cell size used in our stutly is Ay = 1/100. The
schematic construction for this problem is shown in Fig. 6, where the densities of the liq
and gas are assigned the values from the Maxwell construction, i :=10.494273 and
1/py = 1.405065. The initial velocity of both gas and liquid are zero, and no surface tensi
is included in this case. Owing to numerical diffusion, any index function used to descri
the liquid and gas interface will get smeared in the Eulerian advection scheme, and
smearing is proportional to the square root of the number of time steps used. To overc
this difficulty, the level set method employs an intelligent interface sharpening mechani
[5]. In our case, since the van der Waals EOS is used to describe the liquid and gas phi:
any smeared density at the interface is most likely to occur in the elliptic region and 1
flow instability in these region will automatically steepen the interface. More specificall
the condensation and evaporation processes around the phase boundary could moy
averaged density to the liquid or gas phases, and this effect compensates the nume
dissipation in the advection scheme. Figure 7 shows the time evolution of the liquid—
interface, and the interface thickness is two or three mesh points regardless of the time ¢
used to get the final results. Figure 8 shows the locations of the leading liquid front. T
numerical results are compared with the experimental data in [22]. From this figure,
observe that the numerical speed is slower than the experimental speed. The reason f
difference is that in the current calculation the density ratio between liquid and gas is ab
2.8, whereas the experimental data were obtained for water and air, and their density
is about 800. Therefore, the relative aerodynamic resistence is much higher in the cur
study. Figure 7 displays a very interesting wave structure. The oscillations at the liquid—
interface are coming from the violent phase transition. Even though the implementatior
the surface tension may alleviate this problem, the sharp transition with 2—3 grid points at
interface makes it very difficult to correctly discretize the surface tension term. To correc
capture the density gradient anelV V2 term in the momentum equation, one needs to pu
a sufficient number of grid points in the “mixed” region. For a real fluid interface, whic
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FIG. 7. Liquid—gas interfaces at different output times. {a} 0.0; (b) t./G/a = 0.5; (c) t./G/a = 1.0;
(d)t/G/a=15.

351

0 05 : s 2 25
1/~\Ga
FIG.8. The horizontal axis is,/G/a and the vertical axis is/a, wherex is the location of the leading liquid
front. The solid line is the time evolution of the leading liquid front. The density ratio between liquid and gas
around 28. The circle is the experimental data in [22], where real water and air with density ratio around 800 w
used.
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would have a thickness on the order of nanometers, an extremely refined mesh is nel
there. However, the main concern, and also the limitation of the current approach, i
capture the sharp interface, rather than obtain a physical transition inside the layer.

Case 6. This test case is about the collision of two droplets. Similar to the last case, t
initial densities of the liquid and gas phases are assigned the theoretical values again
the Maxwell construction, i.e.,/Jo = 0.494273 and oy = 1.405065. The cell size used
in this case isAx = Ay = 1/100. The initial droplets with radiuR = 0.055 are moving
toward each other with a velocity magnitudelbf= 0.125. No gravity is included in this
case. The surface tension in this case is included through thetevivip. Figure 9 shows
the time evolution of the droplets. The collision and merging of the droplets can be obsen
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FIG. 9. Time evolution of the collision of two droplets. The output times aret(g) 0, (b) t =0.2,
(c)t =0.25, (d)t = 0.3, (e)t = 0.40, ()t = 0.60, (g)t = 0.80, (h)t = 1.20, and (i)t = 1.60.
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FIG. 10. The distribution ¥p. (a) along the central line of Fig. 9i in thedirection and (b) along the central
line of Fig. 9i in they direction. Since both the liquid and gas are treated as the compressible flow in the curr
study, small-density fluctuations appear in the dynamical transport process, especially in the gas phase.

Because of the steepening mechanism at the fluid interfaces from the van der Waals E
the sharp interface is retained in the time evolution process. Figure 10 shows the der
distribution across the central lines in both thend they directions of Fig. 9i, where
the phase boundaries keep 2 mesh points even though 1,600 time steps have passed
output time.

5. DISCUSSION AND CONCLUSION

In this paper, we have constructed a kinetic scheme for the hyperbolic—elliptic syste
where the van der Waals equation of state is used to describe the phase transition. Owi
the evaporation and condensation process for the fluid in the elliptic region, the liquid—
interface is captured sharply in the current scheme. Many test cases validate the cu
approach.

Since the interface in multiphase and multifluid flow is a very complicated dynamic
system, any scheme has its limitations. The current paper is only a starting point for stud
multiphase flow by solving the mixed type equations. The limitations of the current meth
include:

1. The current scheme is limited by a conditippip > 0. This condition may not be
satisfied under certain physical circumstances.

2. The current scheme allows a phase transition to occur, which means that the ma
the individual component cannot be exactly conserved. Also, the effect of latent heat rele
in the phase transition is not included in the current approach owing to the absence of
energy equation.

3. The viscous effect in the phase transition process is only obtained through numer
dissipation and diffusion in the current scheme. The numerical liquid—gas interface he
much larger scale than the real physical thickness of water and air at atmospheric pres
Therefore, the surface tension involved throughv V2p is only applicable to the study
of surface tension close to the critical region. The study of numerical dissipation on-
interface structure needs further investigation.
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4. Besides the equilibrium description from the van der Waals EOS, this method is ol
limited to the flow close to the critical point region. The density ratio used is only on tf
order of 2-5. Because of the stiffness of the equation, using the van der Waals EO:X
simulate high-density ratio two-phase flow is extremely difficult. Physically, the validit
of using a macroscopic EOS for describing high-density phase transitions remains an ¢
guestion. A microscopic description such as one that uses molecular dynamics, is prob
necessary.

Even with the many weaknesses and limitations, the preliminary results presented in
paper are very promising and encouraging. In contrast to many other approaches, sut
level set and VOF methods, there is no need for tracking, index functions, or any spe
treatment around the multifluid interfaces. The advantage of using this kinetic approach
the hyperbolic—elliptic equations is due to the fact that a Riemann solution is extrem
difficult to obtain for a nonhyperbolic system. The current method is the beginning
the development of more physical approaches for describing multiphase flow. Since
modeling of interfacial phenomena associated with surface tension is one of the most c
lenging problems for computational methods of multiphase flows, any numerical treatm
should have a physical basis; otherwise erroneous solutions can be easily generated i
simulation of such a complicated system.
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